Suppression of magnetism under pressure in FeS: A DFT+DMFT study
We investigate the evolution of the magnetic properties in FeS under pressure and show that these cannot be explained solely in terms of the spin-state transition from a high to low spin state due to an increase of the crystal field. Using a combination of density functional theory and dynamical mea...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-05, Vol.95 (20), p.205116, Article 205116 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the evolution of the magnetic properties in FeS under pressure and show that these cannot be explained solely in terms of the spin-state transition from a high to low spin state due to an increase of the crystal field. Using a combination of density functional theory and dynamical mean-field theory (DFT+DMFT), our calculations show that at normal conditions the Fe2+ ions are in the 3d6 high-spin (S=2) state, with some admixture of a 3d7L̲ (S=3/2) configuration, where L̲ stands for the ligand hole. Suppressing the magnetic moment by uniform compression is related to a substantial increase in electron delocalization and occupation of several lower spin configurations. The electronic configuration of Fe ions cannot be characterized by a single ionic state, but only by a mixture of the 3d7L̲,3d8L̲2, and 3d9L̲3 configurations at pressures ~7.5GPa. The local spin-spin correlation function shows well-defined local magnetic moment, corresponding to a large lifetime in the high spin state at normal conditions. Under pressure FeS demonstrates a transition to a mixed state with small lifetimes in each of the spin configurations. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.95.205116 |