Prolonging entanglement dynamics near periodic plasmonic nanostructures

We study the dynamics of two initially entangled qubits, where each one interacts locally and independently of the other, with a plasmonic nanostructure. By considering two different cases for the qubits, two identical two-level systems and two identical V-type quantum systems, where one two-level t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-08, Vol.96 (7), Article 075405
Hauptverfasser: Iliopoulos, Nikos, Terzis, Andreas F., Yannopapas, Vassilios, Paspalakis, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the dynamics of two initially entangled qubits, where each one interacts locally and independently of the other, with a plasmonic nanostructure. By considering two different cases for the qubits, two identical two-level systems and two identical V-type quantum systems, where one two-level transition plays the role of the qubit while the third level acts as an “umbrella level”, we study the corresponding entanglement dynamics for several pure and mixed initial states. As the plasmonic nanostructure we take a two-dimensional lattice of metal-coated dielectric nanoparticles. The presence of this nanostructure leads to highly suppressed spontaneous emission rates of the individual quantum systems, as well as to highly anisotropic spontaneous decay rates for orthogonal dipole matrix elements due to the anisotropic Purcell effect, leading to quantum interference in spontaneous emission. Both of the effects can be used for significantly prolonging the time evolution of entanglement for several system parameters.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.96.075405