Quantitative analytical theory for disordered nodal points

Disorder effects are especially pronounced around nodal points in linearly dispersing band structures as present in graphene or Weyl semimetals. Despite the enormous experimental and numerical progress, even a simple quantity like the average density of states cannot be assessed quantitatively by an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-08, Vol.96 (6), Article 064203
Hauptverfasser: Sbierski, Björn, Madsen, Kevin A., Brouwer, Piet W., Karrasch, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disorder effects are especially pronounced around nodal points in linearly dispersing band structures as present in graphene or Weyl semimetals. Despite the enormous experimental and numerical progress, even a simple quantity like the average density of states cannot be assessed quantitatively by analytical means. We demonstrate how this important problem can be solved employing the functional renormalization group method, and, for the two-dimensional case, we demonstrate excellent agreement with reference data from numerical simulations based on tight-binding models. In three dimensions our analytic results also improve drastically on existing approaches.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.96.064203