On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium

Unsteady two-dimensional flows of incompressible viscoelastic Maxwell medium with upper, low and corotational convective derivatives in the rheological constitutive law are considered. A class of partially invariant solutions is analyzed. Using transition to Lagrangian coordinates, an exact solution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2018-10, Vol.105, p.152-157
Hauptverfasser: Meleshko, S.V., Moshkin, N.P., Pukhnachev, V.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unsteady two-dimensional flows of incompressible viscoelastic Maxwell medium with upper, low and corotational convective derivatives in the rheological constitutive law are considered. A class of partially invariant solutions is analyzed. Using transition to Lagrangian coordinates, an exact solution of the problem of unsteady flow near free-stagnation point was constructed. For the model with Johnson–Segalman convected derivative and special linear dependence of the vertical component of velocity, the general solutions were derived. •A class of partially invariant solutions is analyzed.•Exact solution in Lagrangian coordinates was found.•General solutions for α=−1,0,1 of the Johnson-Segalman model were derived.
ISSN:0020-7462
1878-5638
DOI:10.1016/j.ijnonlinmec.2018.06.002