Real-time diagrammatic approach to current-induced forces: Application to quantum-dot based nanomotors

In recent years there has been increasing excitement regarding nanomotors and particularly current-driven nanomotors. Despite the broad variety of stimulating results found, the regime of strong Coulomb interactions has not been fully explored for this application. Here we consider nanoelectromechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-10, Vol.96 (16), Article 165309
Hauptverfasser: Calvo, Hernán L., Ribetto, Federico D., Bustos-Marún, Raúl A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years there has been increasing excitement regarding nanomotors and particularly current-driven nanomotors. Despite the broad variety of stimulating results found, the regime of strong Coulomb interactions has not been fully explored for this application. Here we consider nanoelectromechanical devices composed of a set of coupled quantum dots interacting with mechanical degrees of freedom taken in the adiabatic limit and weakly coupled to electronic reservoirs. We use a real-time diagrammatic approach to derive general expressions for the current-induced forces, friction coefficients, and zero-frequency force noise in the Coulomb blockade regime of transport. We prove our expressions obey Onsager's reciprocity relations and the fluctuation-dissipation theorem for the energy dissipation of the mechanical modes. The obtained results are illustrated with a nanomotor consisting of a double quantum dot capacitively coupled to rotating charges. We analyze the dynamics and performance of the motor as a function of the applied voltage and loading force for trajectories encircling different triple points in the charge stability diagram.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.96.165309