Thermoelectricity near Anderson localization transitions

The electronic thermoelectric coefficients are analyzed in the vicinity of one and two Anderson localization thresholds in three dimensions. For a single mobility edge, we correct and extend previous studies and find universal approximants which allow us to deduce the critical exponent for the zero-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-10, Vol.96 (15), Article 155201
Hauptverfasser: Yamamoto, Kaoru, Aharony, Amnon, Entin-Wohlman, Ora, Hatano, Naomichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electronic thermoelectric coefficients are analyzed in the vicinity of one and two Anderson localization thresholds in three dimensions. For a single mobility edge, we correct and extend previous studies and find universal approximants which allow us to deduce the critical exponent for the zero-temperature conductivity from thermoelectric measurements. In particular, we find that at nonzero low temperatures the Seebeck coefficient and the thermoelectric efficiency can be very large on the “insulating” side, for chemical potentials below the (zero-temperature) localization threshold. Corrections to the leading power-law singularity in the zero-temperature conductivity are shown to introduce nonuniversal temperature-dependent corrections to the otherwise universal functions which describe the Seebeck coefficient, the figure of merit, and the Wiedemann-Franz ratio. Next, the thermoelectric coefficients are shown to have interesting dependences on the system size. While the Seebeck coefficient decreases with decreasing size, the figure of merit first decreases but then increases, while the Wiedemann-Franz ratio first increases but then decreases as the size decreases. Small (but finite) samples may thus have larger thermoelectric efficiencies. In the last part we study thermoelectricity in systems with a pair of localization edges, the ubiquitous situation in random systems near the centers of electronic energy bands. As the disorder increases, the two thresholds approach each other, and then the Seebeck coefficient and the figure of merit increase significantly, as expected from the general arguments of Mahan and Sofo [J. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996)] for a narrow energy range of the zero-temperature metallic behavior.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.96.155201