Topological invariants for Floquet-Bloch systems with chiral, time-reversal, or particle-hole symmetry

We introduce Z2-valued bulk invariants for symmetry-protected topological phases in 2+1-dimensional driven quantum systems. These invariants adapt the W3 invariant, expressed as a sum over degeneracy points of the propagator, to the respective symmetry class of the Floquet-Bloch Hamiltonian. The bul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-01, Vol.97 (4), Article 045140
Hauptverfasser: Höckendorf, Bastian, Alvermann, Andreas, Fehske, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce Z2-valued bulk invariants for symmetry-protected topological phases in 2+1-dimensional driven quantum systems. These invariants adapt the W3 invariant, expressed as a sum over degeneracy points of the propagator, to the respective symmetry class of the Floquet-Bloch Hamiltonian. The bulk-boundary correspondence that holds for each invariant relates a nonzero value of the bulk invariant to the existence of symmetry-protected topological boundary states. To demonstrate this correspondence we apply our invariants to a chiral Harper, time-reversal Kane-Mele, and particle-hole symmetric graphene model with periodic driving, where they successfully predict the appearance of boundary states that exist despite the trivial topological character of the Floquet bands. Especially for particle-hole symmetry, the combination of the W3 and the Z2 invariants allows us to distinguish between weak and strong topological phases.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.97.045140