Topological invariants for Floquet-Bloch systems with chiral, time-reversal, or particle-hole symmetry
We introduce Z2-valued bulk invariants for symmetry-protected topological phases in 2+1-dimensional driven quantum systems. These invariants adapt the W3 invariant, expressed as a sum over degeneracy points of the propagator, to the respective symmetry class of the Floquet-Bloch Hamiltonian. The bul...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-01, Vol.97 (4), Article 045140 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce Z2-valued bulk invariants for symmetry-protected topological phases in 2+1-dimensional driven quantum systems. These invariants adapt the W3 invariant, expressed as a sum over degeneracy points of the propagator, to the respective symmetry class of the Floquet-Bloch Hamiltonian. The bulk-boundary correspondence that holds for each invariant relates a nonzero value of the bulk invariant to the existence of symmetry-protected topological boundary states. To demonstrate this correspondence we apply our invariants to a chiral Harper, time-reversal Kane-Mele, and particle-hole symmetric graphene model with periodic driving, where they successfully predict the appearance of boundary states that exist despite the trivial topological character of the Floquet bands. Especially for particle-hole symmetry, the combination of the W3 and the Z2 invariants allows us to distinguish between weak and strong topological phases. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.97.045140 |