Ab initio investigation of the thermodynamics of cation distribution and of the electronic and magnetic structures in the LiMn2O4 spinel
The spinel-structured lithium manganese oxide (LiMn2O4) is a material currently used as cathode for secondary lithium-ion batteries, but whose properties are not yet fully understood. Here, we report a computational investigation of the inversion thermodynamics and electronic behavior of LiMn2O4 der...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-02, Vol.97 (8) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spinel-structured lithium manganese oxide (LiMn2O4) is a material currently used as cathode for secondary lithium-ion batteries, but whose properties are not yet fully understood. Here, we report a computational investigation of the inversion thermodynamics and electronic behavior of LiMn2O4 derived from spin-polarized density functional theory calculations with a Hubbard Hamiltonian and long-range dispersion corrections (DFT+U–D3). Based on the analysis of the configurational free energy, we have elucidated a partially inverse equilibrium cation distribution for the LiMn2O4 spinel. This equilibrium degree of inversion is rationalized in terms of the crystal field stabilization effects and the difference between the size of the cations. We compare the atomic charges with the oxidation numbers for each degree of inversion. We found segregation of the Mn charge once these ions occupy the tetrahedral and octahedral sites of the spinel. We have obtained the atomic projections of the electronic band structure and density of states, showing that the normal LiMn2O4 has half-metallic properties, while the fully inverse spinel is an insulator. This material is in the ferrimagnetic state for the inverse and partially inverse cation arrangement. The optimized lattice and oxygen parameters, as well as the equilibrium degree of inversion, are in agreement with the available experimental data. The partial equilibrium degree of inversion is important in the interpretation of the lithium ion migration and surface properties of the LiMn2O4 spinel. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.97.085126 |