Statistically induced topological phase transitions in a one-dimensional superlattice anyon-Hubbard model
We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identifi...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-03, Vol.97 (11), Article 115126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identified by topological invariant and edge modes using exact diagonalization and the density matrix renormalization group algorithm. When only the statistical angle is varied and all other parameters are fixed, a statistically induced topological phase transition can be realized, which provides insights into the topological phase transitions. What's more, we give an explanation of the statistically induced topological phase transition. The topological anyon-Mott phases can also appear in a variety of superlattice anyon-Hubbard models. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.97.115126 |