Statistically induced topological phase transitions in a one-dimensional superlattice anyon-Hubbard model

We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-03, Vol.97 (11), Article 115126
Hauptverfasser: Zuo, Zheng-Wei, Li, Guo-Ling, Li, Liben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identified by topological invariant and edge modes using exact diagonalization and the density matrix renormalization group algorithm. When only the statistical angle is varied and all other parameters are fixed, a statistically induced topological phase transition can be realized, which provides insights into the topological phase transitions. What's more, we give an explanation of the statistically induced topological phase transition. The topological anyon-Mott phases can also appear in a variety of superlattice anyon-Hubbard models.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.97.115126