Magnetic ground state of the multiferroic hexagonal LuFeO3
The structural, electric, and magnetic properties of bulk hexagonal LuFeO3 are investigated. Single phase hexagonal LuFeO3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P63cm space group has been confirmed by x-ray-diffra...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-05, Vol.97 (18) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structural, electric, and magnetic properties of bulk hexagonal LuFeO3 are investigated. Single phase hexagonal LuFeO3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P63cm space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFeO3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)∼130K. Analysis of magnetic neutron-diffraction patterns reveals an in-plane (ab-plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k=(000) with an ordered moment of 2.84μB/Fe3+ at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P−E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr∼0.18μC/cm2. A clear anomaly in the dielectric data is observed at ∼TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFeO3. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.97.184419 |