A self-injection locked DBR laser for laser cooling of beryllium ions
We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of 9 Be + ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optica...
Gespeichert in:
Veröffentlicht in: | Applied physics. B, Lasers and optics Lasers and optics, 2018-11, Vol.124 (11), Article 214 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Applied physics. B, Lasers and optics |
container_volume | 124 |
creator | King, Steven A. Leopold, Tobias Thekkeppatt, Premjith Schmidt, Piet O. |
description | We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of
9
Be
+
ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optical feedback when the laser is resonant with the cavity mode. The short-term laser instability is reduced from the MHz level to approximately 20 kHz by the injection process, thus eliminating the need for a high-bandwidth feedback loop to suppress the otherwise troublesome high-frequency laser noise. Long-term stability of the laser frequency is achieved by feeding back to the length of the enhancement cavity utilising an electro-optic frequency comb generator to produce a beatnote with a laser that is detuned by 98 GHz. Long-term injection locking and frequency stabilisation via a wavemeter are ensured using automatic relocking algorithms. This work could find applications throughout the atomic physics community as a cost-effective alternative to expensive, intrinsically narrow-linewidth lasers where cavity-enhanced frequency doubling is required. |
doi_str_mv | 10.1007/s00340-018-7080-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123083698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123083698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-c73a849af6edf72f7d6112c60bdd5772d62ef3213afdcdf75963d3c4b20b97903</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSbJPssdb6AQVB9Bx281G2ppuabA_996ZswZNzmTk87zvwIHRL4Z4CyIcMwCsgQBWRoMpxhia04oyAqOpzNIG6EoRRSS_RVc4bKCOUmqDlHGcXPOn6jTNDF3scovl2Fj89fuDQZJewj-l0mRhD169x9Lh16RBCt9_iksnX6MI3Ibub056ir-fl5-KVrN5f3hbzFTEVmw3ESN6oqm68cNZL5qUVlDIjoLV2JiWzgjnPGeWNt6YQs1pwy03VMmhrWQOforuxd5fiz97lQW_iPvXlpWaUcVBc1KpQdKRMijkn5_UuddsmHTQFfbSlR1u62NJHW_rYzMZMLmy_dumv-f_QL4VUa7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123083698</pqid></control><display><type>article</type><title>A self-injection locked DBR laser for laser cooling of beryllium ions</title><source>Springer Nature - Complete Springer Journals</source><creator>King, Steven A. ; Leopold, Tobias ; Thekkeppatt, Premjith ; Schmidt, Piet O.</creator><creatorcontrib>King, Steven A. ; Leopold, Tobias ; Thekkeppatt, Premjith ; Schmidt, Piet O.</creatorcontrib><description>We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of
9
Be
+
ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optical feedback when the laser is resonant with the cavity mode. The short-term laser instability is reduced from the MHz level to approximately 20 kHz by the injection process, thus eliminating the need for a high-bandwidth feedback loop to suppress the otherwise troublesome high-frequency laser noise. Long-term stability of the laser frequency is achieved by feeding back to the length of the enhancement cavity utilising an electro-optic frequency comb generator to produce a beatnote with a laser that is detuned by 98 GHz. Long-term injection locking and frequency stabilisation via a wavemeter are ensured using automatic relocking algorithms. This work could find applications throughout the atomic physics community as a cost-effective alternative to expensive, intrinsically narrow-linewidth lasers where cavity-enhanced frequency doubling is required.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-018-7080-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Atomic physics ; Beryllium ; Cooling ; Engineering ; Feedback loops ; Frequency locking ; Laser cooling ; Laser stability ; Lasers ; Optical Devices ; Optical feedback ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Optics ; Second harmonic generation ; Semiconductor lasers</subject><ispartof>Applied physics. B, Lasers and optics, 2018-11, Vol.124 (11), Article 214</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-c73a849af6edf72f7d6112c60bdd5772d62ef3213afdcdf75963d3c4b20b97903</citedby><cites>FETCH-LOGICAL-c425t-c73a849af6edf72f7d6112c60bdd5772d62ef3213afdcdf75963d3c4b20b97903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-018-7080-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-018-7080-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>King, Steven A.</creatorcontrib><creatorcontrib>Leopold, Tobias</creatorcontrib><creatorcontrib>Thekkeppatt, Premjith</creatorcontrib><creatorcontrib>Schmidt, Piet O.</creatorcontrib><title>A self-injection locked DBR laser for laser cooling of beryllium ions</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of
9
Be
+
ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optical feedback when the laser is resonant with the cavity mode. The short-term laser instability is reduced from the MHz level to approximately 20 kHz by the injection process, thus eliminating the need for a high-bandwidth feedback loop to suppress the otherwise troublesome high-frequency laser noise. Long-term stability of the laser frequency is achieved by feeding back to the length of the enhancement cavity utilising an electro-optic frequency comb generator to produce a beatnote with a laser that is detuned by 98 GHz. Long-term injection locking and frequency stabilisation via a wavemeter are ensured using automatic relocking algorithms. This work could find applications throughout the atomic physics community as a cost-effective alternative to expensive, intrinsically narrow-linewidth lasers where cavity-enhanced frequency doubling is required.</description><subject>Applied physics</subject><subject>Atomic physics</subject><subject>Beryllium</subject><subject>Cooling</subject><subject>Engineering</subject><subject>Feedback loops</subject><subject>Frequency locking</subject><subject>Laser cooling</subject><subject>Laser stability</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optical feedback</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Second harmonic generation</subject><subject>Semiconductor lasers</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSbJPssdb6AQVB9Bx281G2ppuabA_996ZswZNzmTk87zvwIHRL4Z4CyIcMwCsgQBWRoMpxhia04oyAqOpzNIG6EoRRSS_RVc4bKCOUmqDlHGcXPOn6jTNDF3scovl2Fj89fuDQZJewj-l0mRhD169x9Lh16RBCt9_iksnX6MI3Ibub056ir-fl5-KVrN5f3hbzFTEVmw3ESN6oqm68cNZL5qUVlDIjoLV2JiWzgjnPGeWNt6YQs1pwy03VMmhrWQOforuxd5fiz97lQW_iPvXlpWaUcVBc1KpQdKRMijkn5_UuddsmHTQFfbSlR1u62NJHW_rYzMZMLmy_dumv-f_QL4VUa7U</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>King, Steven A.</creator><creator>Leopold, Tobias</creator><creator>Thekkeppatt, Premjith</creator><creator>Schmidt, Piet O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>A self-injection locked DBR laser for laser cooling of beryllium ions</title><author>King, Steven A. ; Leopold, Tobias ; Thekkeppatt, Premjith ; Schmidt, Piet O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-c73a849af6edf72f7d6112c60bdd5772d62ef3213afdcdf75963d3c4b20b97903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Atomic physics</topic><topic>Beryllium</topic><topic>Cooling</topic><topic>Engineering</topic><topic>Feedback loops</topic><topic>Frequency locking</topic><topic>Laser cooling</topic><topic>Laser stability</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optical feedback</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Second harmonic generation</topic><topic>Semiconductor lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Steven A.</creatorcontrib><creatorcontrib>Leopold, Tobias</creatorcontrib><creatorcontrib>Thekkeppatt, Premjith</creatorcontrib><creatorcontrib>Schmidt, Piet O.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Steven A.</au><au>Leopold, Tobias</au><au>Thekkeppatt, Premjith</au><au>Schmidt, Piet O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-injection locked DBR laser for laser cooling of beryllium ions</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>124</volume><issue>11</issue><artnum>214</artnum><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of
9
Be
+
ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optical feedback when the laser is resonant with the cavity mode. The short-term laser instability is reduced from the MHz level to approximately 20 kHz by the injection process, thus eliminating the need for a high-bandwidth feedback loop to suppress the otherwise troublesome high-frequency laser noise. Long-term stability of the laser frequency is achieved by feeding back to the length of the enhancement cavity utilising an electro-optic frequency comb generator to produce a beatnote with a laser that is detuned by 98 GHz. Long-term injection locking and frequency stabilisation via a wavemeter are ensured using automatic relocking algorithms. This work could find applications throughout the atomic physics community as a cost-effective alternative to expensive, intrinsically narrow-linewidth lasers where cavity-enhanced frequency doubling is required.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00340-018-7080-0</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-2171 |
ispartof | Applied physics. B, Lasers and optics, 2018-11, Vol.124 (11), Article 214 |
issn | 0946-2171 1432-0649 |
language | eng |
recordid | cdi_proquest_journals_2123083698 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied physics Atomic physics Beryllium Cooling Engineering Feedback loops Frequency locking Laser cooling Laser stability Lasers Optical Devices Optical feedback Optics Photonics Physical Chemistry Physics Physics and Astronomy Quantum Optics Second harmonic generation Semiconductor lasers |
title | A self-injection locked DBR laser for laser cooling of beryllium ions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-injection%20locked%20DBR%20laser%20for%20laser%20cooling%20of%20beryllium%20ions&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=King,%20Steven%20A.&rft.date=2018-11-01&rft.volume=124&rft.issue=11&rft.artnum=214&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-018-7080-0&rft_dat=%3Cproquest_cross%3E2123083698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123083698&rft_id=info:pmid/&rfr_iscdi=true |