A self-injection locked DBR laser for laser cooling of beryllium ions

We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of 9 Be + ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2018-11, Vol.124 (11), Article 214
Hauptverfasser: King, Steven A., Leopold, Tobias, Thekkeppatt, Premjith, Schmidt, Piet O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Applied physics. B, Lasers and optics
container_volume 124
creator King, Steven A.
Leopold, Tobias
Thekkeppatt, Premjith
Schmidt, Piet O.
description We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of 9 Be + ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optical feedback when the laser is resonant with the cavity mode. The short-term laser instability is reduced from the MHz level to approximately 20 kHz by the injection process, thus eliminating the need for a high-bandwidth feedback loop to suppress the otherwise troublesome high-frequency laser noise. Long-term stability of the laser frequency is achieved by feeding back to the length of the enhancement cavity utilising an electro-optic frequency comb generator to produce a beatnote with a laser that is detuned by 98 GHz. Long-term injection locking and frequency stabilisation via a wavemeter are ensured using automatic relocking algorithms. This work could find applications throughout the atomic physics community as a cost-effective alternative to expensive, intrinsically narrow-linewidth lasers where cavity-enhanced frequency doubling is required.
doi_str_mv 10.1007/s00340-018-7080-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2123083698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123083698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-c73a849af6edf72f7d6112c60bdd5772d62ef3213afdcdf75963d3c4b20b97903</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSbJPssdb6AQVB9Bx281G2ppuabA_996ZswZNzmTk87zvwIHRL4Z4CyIcMwCsgQBWRoMpxhia04oyAqOpzNIG6EoRRSS_RVc4bKCOUmqDlHGcXPOn6jTNDF3scovl2Fj89fuDQZJewj-l0mRhD169x9Lh16RBCt9_iksnX6MI3Ibub056ir-fl5-KVrN5f3hbzFTEVmw3ESN6oqm68cNZL5qUVlDIjoLV2JiWzgjnPGeWNt6YQs1pwy03VMmhrWQOforuxd5fiz97lQW_iPvXlpWaUcVBc1KpQdKRMijkn5_UuddsmHTQFfbSlR1u62NJHW_rYzMZMLmy_dumv-f_QL4VUa7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123083698</pqid></control><display><type>article</type><title>A self-injection locked DBR laser for laser cooling of beryllium ions</title><source>Springer Nature - Complete Springer Journals</source><creator>King, Steven A. ; Leopold, Tobias ; Thekkeppatt, Premjith ; Schmidt, Piet O.</creator><creatorcontrib>King, Steven A. ; Leopold, Tobias ; Thekkeppatt, Premjith ; Schmidt, Piet O.</creatorcontrib><description>We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of 9 Be + ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optical feedback when the laser is resonant with the cavity mode. The short-term laser instability is reduced from the MHz level to approximately 20 kHz by the injection process, thus eliminating the need for a high-bandwidth feedback loop to suppress the otherwise troublesome high-frequency laser noise. Long-term stability of the laser frequency is achieved by feeding back to the length of the enhancement cavity utilising an electro-optic frequency comb generator to produce a beatnote with a laser that is detuned by 98 GHz. Long-term injection locking and frequency stabilisation via a wavemeter are ensured using automatic relocking algorithms. This work could find applications throughout the atomic physics community as a cost-effective alternative to expensive, intrinsically narrow-linewidth lasers where cavity-enhanced frequency doubling is required.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-018-7080-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Atomic physics ; Beryllium ; Cooling ; Engineering ; Feedback loops ; Frequency locking ; Laser cooling ; Laser stability ; Lasers ; Optical Devices ; Optical feedback ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Optics ; Second harmonic generation ; Semiconductor lasers</subject><ispartof>Applied physics. B, Lasers and optics, 2018-11, Vol.124 (11), Article 214</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-c73a849af6edf72f7d6112c60bdd5772d62ef3213afdcdf75963d3c4b20b97903</citedby><cites>FETCH-LOGICAL-c425t-c73a849af6edf72f7d6112c60bdd5772d62ef3213afdcdf75963d3c4b20b97903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-018-7080-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-018-7080-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>King, Steven A.</creatorcontrib><creatorcontrib>Leopold, Tobias</creatorcontrib><creatorcontrib>Thekkeppatt, Premjith</creatorcontrib><creatorcontrib>Schmidt, Piet O.</creatorcontrib><title>A self-injection locked DBR laser for laser cooling of beryllium ions</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of 9 Be + ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optical feedback when the laser is resonant with the cavity mode. The short-term laser instability is reduced from the MHz level to approximately 20 kHz by the injection process, thus eliminating the need for a high-bandwidth feedback loop to suppress the otherwise troublesome high-frequency laser noise. Long-term stability of the laser frequency is achieved by feeding back to the length of the enhancement cavity utilising an electro-optic frequency comb generator to produce a beatnote with a laser that is detuned by 98 GHz. Long-term injection locking and frequency stabilisation via a wavemeter are ensured using automatic relocking algorithms. This work could find applications throughout the atomic physics community as a cost-effective alternative to expensive, intrinsically narrow-linewidth lasers where cavity-enhanced frequency doubling is required.</description><subject>Applied physics</subject><subject>Atomic physics</subject><subject>Beryllium</subject><subject>Cooling</subject><subject>Engineering</subject><subject>Feedback loops</subject><subject>Frequency locking</subject><subject>Laser cooling</subject><subject>Laser stability</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optical feedback</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Second harmonic generation</subject><subject>Semiconductor lasers</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3SSbJPssdb6AQVB9Bx281G2ppuabA_996ZswZNzmTk87zvwIHRL4Z4CyIcMwCsgQBWRoMpxhia04oyAqOpzNIG6EoRRSS_RVc4bKCOUmqDlHGcXPOn6jTNDF3scovl2Fj89fuDQZJewj-l0mRhD169x9Lh16RBCt9_iksnX6MI3Ibub056ir-fl5-KVrN5f3hbzFTEVmw3ESN6oqm68cNZL5qUVlDIjoLV2JiWzgjnPGeWNt6YQs1pwy03VMmhrWQOforuxd5fiz97lQW_iPvXlpWaUcVBc1KpQdKRMijkn5_UuddsmHTQFfbSlR1u62NJHW_rYzMZMLmy_dumv-f_QL4VUa7U</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>King, Steven A.</creator><creator>Leopold, Tobias</creator><creator>Thekkeppatt, Premjith</creator><creator>Schmidt, Piet O.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>A self-injection locked DBR laser for laser cooling of beryllium ions</title><author>King, Steven A. ; Leopold, Tobias ; Thekkeppatt, Premjith ; Schmidt, Piet O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-c73a849af6edf72f7d6112c60bdd5772d62ef3213afdcdf75963d3c4b20b97903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Atomic physics</topic><topic>Beryllium</topic><topic>Cooling</topic><topic>Engineering</topic><topic>Feedback loops</topic><topic>Frequency locking</topic><topic>Laser cooling</topic><topic>Laser stability</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optical feedback</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Second harmonic generation</topic><topic>Semiconductor lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Steven A.</creatorcontrib><creatorcontrib>Leopold, Tobias</creatorcontrib><creatorcontrib>Thekkeppatt, Premjith</creatorcontrib><creatorcontrib>Schmidt, Piet O.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Steven A.</au><au>Leopold, Tobias</au><au>Thekkeppatt, Premjith</au><au>Schmidt, Piet O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-injection locked DBR laser for laser cooling of beryllium ions</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>124</volume><issue>11</issue><artnum>214</artnum><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of 9 Be + ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optical feedback when the laser is resonant with the cavity mode. The short-term laser instability is reduced from the MHz level to approximately 20 kHz by the injection process, thus eliminating the need for a high-bandwidth feedback loop to suppress the otherwise troublesome high-frequency laser noise. Long-term stability of the laser frequency is achieved by feeding back to the length of the enhancement cavity utilising an electro-optic frequency comb generator to produce a beatnote with a laser that is detuned by 98 GHz. Long-term injection locking and frequency stabilisation via a wavemeter are ensured using automatic relocking algorithms. This work could find applications throughout the atomic physics community as a cost-effective alternative to expensive, intrinsically narrow-linewidth lasers where cavity-enhanced frequency doubling is required.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00340-018-7080-0</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2018-11, Vol.124 (11), Article 214
issn 0946-2171
1432-0649
language eng
recordid cdi_proquest_journals_2123083698
source Springer Nature - Complete Springer Journals
subjects Applied physics
Atomic physics
Beryllium
Cooling
Engineering
Feedback loops
Frequency locking
Laser cooling
Laser stability
Lasers
Optical Devices
Optical feedback
Optics
Photonics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Optics
Second harmonic generation
Semiconductor lasers
title A self-injection locked DBR laser for laser cooling of beryllium ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-injection%20locked%20DBR%20laser%20for%20laser%20cooling%20of%20beryllium%20ions&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=King,%20Steven%20A.&rft.date=2018-11-01&rft.volume=124&rft.issue=11&rft.artnum=214&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-018-7080-0&rft_dat=%3Cproquest_cross%3E2123083698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123083698&rft_id=info:pmid/&rfr_iscdi=true