Couplings of Brownian Motions of Deterministic Distance in Model Spaces of Constant Curvature

We consider the model space M K n of constant curvature K and dimension n ≥ 1 (Euclidean space for K = 0 , sphere for K > 0 and hyperbolic space for K < 0 ), and we show that given a function ρ : [ 0 , ∞ ) → [ 0 , ∞ ) with ρ ( 0 ) = dist ( x , y ) there exists a coadapted coupling ( X ( t ), ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2018-12, Vol.31 (4), p.2005-2031
Hauptverfasser: Pascu, Mihai N., Popescu, Ionel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the model space M K n of constant curvature K and dimension n ≥ 1 (Euclidean space for K = 0 , sphere for K > 0 and hyperbolic space for K < 0 ), and we show that given a function ρ : [ 0 , ∞ ) → [ 0 , ∞ ) with ρ ( 0 ) = dist ( x , y ) there exists a coadapted coupling ( X ( t ),  Y ( t )) of Brownian motions on M K n starting at ( x ,  y ) such that ρ ( t ) = dist ( X ( t ) , Y ( t ) ) for every t ≥ 0 if and only if ρ is continuous and satisfies for almost every t ≥ 0 the differential inequality - ( n - 1 ) K tan K ρ ( t ) 2 ≤ ρ ′ ( t ) ≤ - ( n - 1 ) K tan K ρ ( t ) 2 + 2 ( n - 1 ) K sin ( K ρ ( t ) ) . In other words, we characterize all coadapted couplings of Brownian motions on the model space M K n for which the distance between the processes is deterministic. In addition, the construction of the coupling is explicit for every choice of ρ satisfying the above hypotheses.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-017-0781-1