Couplings of Brownian Motions of Deterministic Distance in Model Spaces of Constant Curvature
We consider the model space M K n of constant curvature K and dimension n ≥ 1 (Euclidean space for K = 0 , sphere for K > 0 and hyperbolic space for K < 0 ), and we show that given a function ρ : [ 0 , ∞ ) → [ 0 , ∞ ) with ρ ( 0 ) = dist ( x , y ) there exists a coadapted coupling ( X ( t ), ...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2018-12, Vol.31 (4), p.2005-2031 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the model space
M
K
n
of constant curvature
K
and dimension
n
≥
1
(Euclidean space for
K
=
0
, sphere for
K
>
0
and hyperbolic space for
K
<
0
), and we show that given a function
ρ
:
[
0
,
∞
)
→
[
0
,
∞
)
with
ρ
(
0
)
=
dist
(
x
,
y
)
there exists a coadapted coupling (
X
(
t
),
Y
(
t
)) of Brownian motions on
M
K
n
starting at (
x
,
y
) such that
ρ
(
t
)
=
dist
(
X
(
t
)
,
Y
(
t
)
)
for every
t
≥
0
if and only if
ρ
is continuous and satisfies for almost every
t
≥
0
the differential inequality
-
(
n
-
1
)
K
tan
K
ρ
(
t
)
2
≤
ρ
′
(
t
)
≤
-
(
n
-
1
)
K
tan
K
ρ
(
t
)
2
+
2
(
n
-
1
)
K
sin
(
K
ρ
(
t
)
)
.
In other words, we characterize all coadapted couplings of Brownian motions on the model space
M
K
n
for which the distance between the processes is deterministic. In addition, the construction of the coupling is explicit for every choice of
ρ
satisfying the above hypotheses. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-017-0781-1 |