Simultaneous removal of NO^sub x and soot particulate from diesel exhaust by in-situ catalytic generation and utilisa^tion of N^sub 2^O
One of the outstanding challenges in diesel exhaust catalysis is to integrate oxidation chemistry, soot filtration and NOx reduction in a single aftertreatment unit, while avoiding the need for fuel injection to regenerate the filter. Here we show that destruction of trapped soot can be initiated ca...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2018-12, Vol.239, p.10 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the outstanding challenges in diesel exhaust catalysis is to integrate oxidation chemistry, soot filtration and NOx reduction in a single aftertreatment unit, while avoiding the need for fuel injection to regenerate the filter. Here we show that destruction of trapped soot can be initiated catalytically at 200 °C when its oxidation is coupled with non-selective NOx reduction (using NH3 as reductant), which acts as an in-situ source of N2O. In laboratory tests over an extended temperature range (up to 800 °C), using supported silver as a catalyst for both non-selective NOx-reduction and soot oxidation, the conversion of immobilised soot to CO2 can be resolved into four consecutive steps as the temperature rises: catalysed oxidation by N2O; non-catalysed oxidation by NO2; catalysed oxidation by O2; non-catalysed oxidation by O2. Initial engine tests indicate that the critical first step (C + N2O) can be replicated in a diesel exhaust. |
---|---|
ISSN: | 0926-3373 1873-3883 |