In vitro study of reactive oxygen species production during photodynamic therapy in ultrasound-pretreated cancer cells

Several recent studies bring evidence of cell death enhancement in photodynamic compound loaded cells by ultrasonic treatment. There are a number of hypotheses suggesting the mechanism of the harmful ultrasonic effect. One of them considers a process in the activation of photosensitizers by ultrason...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological research 2007, Vol.56 Suppl 1, p.S27-S32
Hauptverfasser: Kolárová, H, Bajgar, R, Tománková, K, Krestýn, E, Dolezal, L, Hálek, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several recent studies bring evidence of cell death enhancement in photodynamic compound loaded cells by ultrasonic treatment. There are a number of hypotheses suggesting the mechanism of the harmful ultrasonic effect. One of them considers a process in the activation of photosensitizers by ultrasonic energy. Because the basis of the photodynamic damaging effect on cells consists in the production of reactive oxygen species (ROS), we focused our study on whether the ultrasound can increase ROS production within cancer cells. Particularly, we studied ROS formation in ultrasound pretreated breast adenocarcinoma cells during photodynamic therapy in the presence of chloroaluminum phthalocyanine disulfonate (ClAlPcS2). Production of ROS was investigated by the molecular probe CM-H2DCFDA. Our results show that ClAlPcS2 induces higher ROS production in the ultrasound pretreated cell lines at a concentration of 100 microM and light intensity of 2 mW/cm2. We also observed a dependence of ROS production on photosensitizer concentration and light dose. These results demonstrate that the photodynamic effect on breast cancer cells can be enhanced by ultrasound pretreatment.
ISSN:0862-8408
1802-9973
DOI:10.33549/physiolres.931298