Nonlinear delay systems, Lie algebras and Lyapunov transformations

In this paper we consider nonlinear delay systems of the form ẋ(t) = A(x(t), x(t – δ))x(t) + B(x(t), x(t – δ))u(t) and obtain new stability and control results by replacing the system by a sequence of linear, time‐varying systems and using an explicit representation for the solution of such systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of mathematical control and information 2002-03, Vol.19 (1-and-2), p.59-72
1. Verfasser: Banks, S P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider nonlinear delay systems of the form ẋ(t) = A(x(t), x(t – δ))x(t) + B(x(t), x(t – δ))u(t) and obtain new stability and control results by replacing the system by a sequence of linear, time‐varying systems and using an explicit representation for the solution of such systems in terms of a Lie algebra associated with the system. In the case of nilpotent Lie algebras we use a Lyapunov transformation to prove stability.
ISSN:0265-0754
1471-6887
DOI:10.1093/imamci/19.1_and_2.59