A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data/Commentaries/Reply: Considerations in the Use of Probabilistic Multidimensional Scaling Models
A probabilistic multidimensional scaling model that estimates both location and variance parameters for proximity and preference data is presented and compared to a deterministic scaling model. Simulated and empirical choice data are employed to compare the models. Variance estimates from the probab...
Gespeichert in:
Veröffentlicht in: | Marketing science (Providence, R.I.) R.I.), 1986-10, Vol.5 (4), p.325 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 325 |
container_title | Marketing science (Providence, R.I.) |
container_volume | 5 |
creator | MacKay, David B Zinnes, Joseph L McMennamin, John L Windal, Pierre M |
description | A probabilistic multidimensional scaling model that estimates both location and variance parameters for proximity and preference data is presented and compared to a deterministic scaling model. Simulated and empirical choice data are employed to compare the models. Variance estimates from the probabilistic model are applied to test a hypothesis about the homogeneity of stimulus perception under alternative modes of stimulus presentation. McMennamin comments that the mathematical analysis systems in MacKay and Zinnes (M-Z) are superb, but the input material too often is not. Windal regards M-Z's work as a useful extension of deterministic multidimensional scaling models, and M-Z reply that the probabilistic model they present is only a start, not the ultimate solution. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_212227152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1212965</sourcerecordid><originalsourceid>FETCH-proquest_journals_2122271523</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhepYKr9D4P30O3GmtabRMVLQfwAb2WaTOqUzW7d2YD9Y_4-t6UHL4KnYWCe532ZE5VNpuY6n17N3gcq02VhclPM52dqKLLRWpdGzzL1fQtPwa9wxZYlcg0L35CF1geIHwSL3kZuuCMn7B1aeKnRsluDb_fcF3ccd4CuSRu1FMjVBHcYcVz5LlERA5OMn2lrdzdQ-aRpKGBMMgF2h4w3oaPud42_gg_95EKdtmiFRsd5ri4f7l-rx3wb_GdPEpcb34fEydJMjDFl-kXxr6Mf4GNmHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212227152</pqid></control><display><type>article</type><title>A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data/Commentaries/Reply: Considerations in the Use of Probabilistic Multidimensional Scaling Models</title><source>Informs</source><source>EBSCOhost Business Source Complete</source><source>Jstor Complete Legacy</source><creator>MacKay, David B ; Zinnes, Joseph L ; McMennamin, John L ; Windal, Pierre M</creator><creatorcontrib>MacKay, David B ; Zinnes, Joseph L ; McMennamin, John L ; Windal, Pierre M</creatorcontrib><description>A probabilistic multidimensional scaling model that estimates both location and variance parameters for proximity and preference data is presented and compared to a deterministic scaling model. Simulated and empirical choice data are employed to compare the models. Variance estimates from the probabilistic model are applied to test a hypothesis about the homogeneity of stimulus perception under alternative modes of stimulus presentation. McMennamin comments that the mathematical analysis systems in MacKay and Zinnes (M-Z) are superb, but the input material too often is not. Windal regards M-Z's work as a useful extension of deterministic multidimensional scaling models, and M-Z reply that the probabilistic model they present is only a start, not the ultimate solution.</description><identifier>ISSN: 0732-2399</identifier><identifier>EISSN: 1526-548X</identifier><identifier>CODEN: MARSE5</identifier><language>eng</language><publisher>Linthicum: Institute for Operations Research and the Management Sciences</publisher><subject>Mathematical models ; Multiple ; Probability ; Scaling ; Statistical analysis ; Statistical methods</subject><ispartof>Marketing science (Providence, R.I.), 1986-10, Vol.5 (4), p.325</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Fall 1986</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>MacKay, David B</creatorcontrib><creatorcontrib>Zinnes, Joseph L</creatorcontrib><creatorcontrib>McMennamin, John L</creatorcontrib><creatorcontrib>Windal, Pierre M</creatorcontrib><title>A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data/Commentaries/Reply: Considerations in the Use of Probabilistic Multidimensional Scaling Models</title><title>Marketing science (Providence, R.I.)</title><description>A probabilistic multidimensional scaling model that estimates both location and variance parameters for proximity and preference data is presented and compared to a deterministic scaling model. Simulated and empirical choice data are employed to compare the models. Variance estimates from the probabilistic model are applied to test a hypothesis about the homogeneity of stimulus perception under alternative modes of stimulus presentation. McMennamin comments that the mathematical analysis systems in MacKay and Zinnes (M-Z) are superb, but the input material too often is not. Windal regards M-Z's work as a useful extension of deterministic multidimensional scaling models, and M-Z reply that the probabilistic model they present is only a start, not the ultimate solution.</description><subject>Mathematical models</subject><subject>Multiple</subject><subject>Probability</subject><subject>Scaling</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0732-2399</issn><issn>1526-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhepYKr9D4P30O3GmtabRMVLQfwAb2WaTOqUzW7d2YD9Y_4-t6UHL4KnYWCe532ZE5VNpuY6n17N3gcq02VhclPM52dqKLLRWpdGzzL1fQtPwa9wxZYlcg0L35CF1geIHwSL3kZuuCMn7B1aeKnRsluDb_fcF3ccd4CuSRu1FMjVBHcYcVz5LlERA5OMn2lrdzdQ-aRpKGBMMgF2h4w3oaPud42_gg_95EKdtmiFRsd5ri4f7l-rx3wb_GdPEpcb34fEydJMjDFl-kXxr6Mf4GNmHg</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>MacKay, David B</creator><creator>Zinnes, Joseph L</creator><creator>McMennamin, John L</creator><creator>Windal, Pierre M</creator><general>Institute for Operations Research and the Management Sciences</general><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19861001</creationdate><title>A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data/Commentaries/Reply: Considerations in the Use of Probabilistic Multidimensional Scaling Models</title><author>MacKay, David B ; Zinnes, Joseph L ; McMennamin, John L ; Windal, Pierre M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2122271523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Mathematical models</topic><topic>Multiple</topic><topic>Probability</topic><topic>Scaling</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacKay, David B</creatorcontrib><creatorcontrib>Zinnes, Joseph L</creatorcontrib><creatorcontrib>McMennamin, John L</creatorcontrib><creatorcontrib>Windal, Pierre M</creatorcontrib><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Marketing science (Providence, R.I.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacKay, David B</au><au>Zinnes, Joseph L</au><au>McMennamin, John L</au><au>Windal, Pierre M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data/Commentaries/Reply: Considerations in the Use of Probabilistic Multidimensional Scaling Models</atitle><jtitle>Marketing science (Providence, R.I.)</jtitle><date>1986-10-01</date><risdate>1986</risdate><volume>5</volume><issue>4</issue><spage>325</spage><pages>325-</pages><issn>0732-2399</issn><eissn>1526-548X</eissn><coden>MARSE5</coden><abstract>A probabilistic multidimensional scaling model that estimates both location and variance parameters for proximity and preference data is presented and compared to a deterministic scaling model. Simulated and empirical choice data are employed to compare the models. Variance estimates from the probabilistic model are applied to test a hypothesis about the homogeneity of stimulus perception under alternative modes of stimulus presentation. McMennamin comments that the mathematical analysis systems in MacKay and Zinnes (M-Z) are superb, but the input material too often is not. Windal regards M-Z's work as a useful extension of deterministic multidimensional scaling models, and M-Z reply that the probabilistic model they present is only a start, not the ultimate solution.</abstract><cop>Linthicum</cop><pub>Institute for Operations Research and the Management Sciences</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0732-2399 |
ispartof | Marketing science (Providence, R.I.), 1986-10, Vol.5 (4), p.325 |
issn | 0732-2399 1526-548X |
language | eng |
recordid | cdi_proquest_journals_212227152 |
source | Informs; EBSCOhost Business Source Complete; Jstor Complete Legacy |
subjects | Mathematical models Multiple Probability Scaling Statistical analysis Statistical methods |
title | A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data/Commentaries/Reply: Considerations in the Use of Probabilistic Multidimensional Scaling Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Probabilistic%20Model%20for%20the%20Multidimensional%20Scaling%20of%20Proximity%20and%20Preference%20Data/Commentaries/Reply:%20Considerations%20in%20the%20Use%20of%20Probabilistic%20Multidimensional%20Scaling%20Models&rft.jtitle=Marketing%20science%20(Providence,%20R.I.)&rft.au=MacKay,%20David%20B&rft.date=1986-10-01&rft.volume=5&rft.issue=4&rft.spage=325&rft.pages=325-&rft.issn=0732-2399&rft.eissn=1526-548X&rft.coden=MARSE5&rft_id=info:doi/&rft_dat=%3Cproquest%3E1212965%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212227152&rft_id=info:pmid/&rfr_iscdi=true |