A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data/Commentaries/Reply: Considerations in the Use of Probabilistic Multidimensional Scaling Models

A probabilistic multidimensional scaling model that estimates both location and variance parameters for proximity and preference data is presented and compared to a deterministic scaling model. Simulated and empirical choice data are employed to compare the models. Variance estimates from the probab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marketing science (Providence, R.I.) R.I.), 1986-10, Vol.5 (4), p.325
Hauptverfasser: MacKay, David B, Zinnes, Joseph L, McMennamin, John L, Windal, Pierre M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A probabilistic multidimensional scaling model that estimates both location and variance parameters for proximity and preference data is presented and compared to a deterministic scaling model. Simulated and empirical choice data are employed to compare the models. Variance estimates from the probabilistic model are applied to test a hypothesis about the homogeneity of stimulus perception under alternative modes of stimulus presentation. McMennamin comments that the mathematical analysis systems in MacKay and Zinnes (M-Z) are superb, but the input material too often is not. Windal regards M-Z's work as a useful extension of deterministic multidimensional scaling models, and M-Z reply that the probabilistic model they present is only a start, not the ultimate solution.
ISSN:0732-2399
1526-548X