Classification of boundary equilibrium bifurcations in planar Filippov systems
If a family of piecewise smooth systems depending on a real parameter is defined on two different regions of the plane separated by a switching surface, then a boundary equilibrium bifurcation occurs if a stationary point of one of the systems intersects the switching surface at a critical value of...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2016-01, Vol.26 (1), p.013108-013108 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 013108 |
---|---|
container_issue | 1 |
container_start_page | 013108 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 26 |
creator | Glendinning, Paul |
description | If a family of piecewise smooth systems depending on a real parameter is defined on two different regions of the plane separated by a switching surface, then a boundary equilibrium bifurcation occurs if a stationary point of one of the systems intersects the switching surface at a critical value of the parameter. We derive the leading order terms of a normal form for boundary equilibrium bifurcations of planar systems. This makes it straightforward to derive a complete classification of the bifurcations that can occur. We are thus able to confirm classic results of Filippov [Differential Equations with Discontinuous Right Hand Sides (Kluwer, Dordrecht, 1988)] using different and more transparent methods, and explain why the ‘missing’ cases of Hogan et al. [Piecewise Smooth Dynamical Systems: The Case of the Missing Boundary Equilibrium Bifurcations (University of Bristol, 2015)] are the only cases omitted in more recent work. |
doi_str_mv | 10.1063/1.4940017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2121910643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121910643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-4c183ad94099b55f6abae0f1e9c1e1732b8520ef3e7637fb9dc9aa9a87ce4cfd3</originalsourceid><addsrcrecordid>eNp90E9LwzAABfAgipvTg19AAl5U6EzSP2mOMpwKQy96DmmaQEbbdEkz2Lc3c3OCgqcE8uPl8QC4xGiKUZHe42nGMoQwPQJjjEqW0KIkx9t7niU4R2gEzrxfokhImp-CEYnvRVmgMXidNcJ7o40Ug7EdtBpWNnS1cBuoVsE0pnImtLAyOrid8dB0sG9EJxycR9D3dg39xg-q9efgRIvGq4v9OQEf88f32XOyeHt6mT0sEpnhckgyictU1LE0Y1We60JUQiGNFZNYYZqSqswJUjpVtEiprlgtmRBMlFSqTOo6nYCbXW7v7CooP_DWeKma2ErZ4DmmBUEkZ4RGev2LLm1wXWzHCSaYxQWzNKrbnZLOeu-U5r0zbVyBY8S3I3PM9yNHe7VPDFWr6oP8XjWCux3w0gxfmx3M2rqfJN7X-j_89-tPpwyTWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121910643</pqid></control><display><type>article</type><title>Classification of boundary equilibrium bifurcations in planar Filippov systems</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Glendinning, Paul</creator><creatorcontrib>Glendinning, Paul</creatorcontrib><description>If a family of piecewise smooth systems depending on a real parameter is defined on two different regions of the plane separated by a switching surface, then a boundary equilibrium bifurcation occurs if a stationary point of one of the systems intersects the switching surface at a critical value of the parameter. We derive the leading order terms of a normal form for boundary equilibrium bifurcations of planar systems. This makes it straightforward to derive a complete classification of the bifurcations that can occur. We are thus able to confirm classic results of Filippov [Differential Equations with Discontinuous Right Hand Sides (Kluwer, Dordrecht, 1988)] using different and more transparent methods, and explain why the ‘missing’ cases of Hogan et al. [Piecewise Smooth Dynamical Systems: The Case of the Missing Boundary Equilibrium Bifurcations (University of Bristol, 2015)] are the only cases omitted in more recent work.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4940017</identifier><identifier>PMID: 26826860</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bifurcations ; Classification ; Differential equations ; Equilibrium ; Parameters ; Switching</subject><ispartof>Chaos (Woodbury, N.Y.), 2016-01, Vol.26 (1), p.013108-013108</ispartof><rights>AIP Publishing LLC</rights><rights>2016 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-4c183ad94099b55f6abae0f1e9c1e1732b8520ef3e7637fb9dc9aa9a87ce4cfd3</citedby><cites>FETCH-LOGICAL-c418t-4c183ad94099b55f6abae0f1e9c1e1732b8520ef3e7637fb9dc9aa9a87ce4cfd3</cites><orcidid>0000-0003-1544-9161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26826860$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glendinning, Paul</creatorcontrib><title>Classification of boundary equilibrium bifurcations in planar Filippov systems</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>If a family of piecewise smooth systems depending on a real parameter is defined on two different regions of the plane separated by a switching surface, then a boundary equilibrium bifurcation occurs if a stationary point of one of the systems intersects the switching surface at a critical value of the parameter. We derive the leading order terms of a normal form for boundary equilibrium bifurcations of planar systems. This makes it straightforward to derive a complete classification of the bifurcations that can occur. We are thus able to confirm classic results of Filippov [Differential Equations with Discontinuous Right Hand Sides (Kluwer, Dordrecht, 1988)] using different and more transparent methods, and explain why the ‘missing’ cases of Hogan et al. [Piecewise Smooth Dynamical Systems: The Case of the Missing Boundary Equilibrium Bifurcations (University of Bristol, 2015)] are the only cases omitted in more recent work.</description><subject>Bifurcations</subject><subject>Classification</subject><subject>Differential equations</subject><subject>Equilibrium</subject><subject>Parameters</subject><subject>Switching</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAABfAgipvTg19AAl5U6EzSP2mOMpwKQy96DmmaQEbbdEkz2Lc3c3OCgqcE8uPl8QC4xGiKUZHe42nGMoQwPQJjjEqW0KIkx9t7niU4R2gEzrxfokhImp-CEYnvRVmgMXidNcJ7o40Ug7EdtBpWNnS1cBuoVsE0pnImtLAyOrid8dB0sG9EJxycR9D3dg39xg-q9efgRIvGq4v9OQEf88f32XOyeHt6mT0sEpnhckgyictU1LE0Y1We60JUQiGNFZNYYZqSqswJUjpVtEiprlgtmRBMlFSqTOo6nYCbXW7v7CooP_DWeKma2ErZ4DmmBUEkZ4RGev2LLm1wXWzHCSaYxQWzNKrbnZLOeu-U5r0zbVyBY8S3I3PM9yNHe7VPDFWr6oP8XjWCux3w0gxfmx3M2rqfJN7X-j_89-tPpwyTWQ</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Glendinning, Paul</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1544-9161</orcidid></search><sort><creationdate>201601</creationdate><title>Classification of boundary equilibrium bifurcations in planar Filippov systems</title><author>Glendinning, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-4c183ad94099b55f6abae0f1e9c1e1732b8520ef3e7637fb9dc9aa9a87ce4cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bifurcations</topic><topic>Classification</topic><topic>Differential equations</topic><topic>Equilibrium</topic><topic>Parameters</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glendinning, Paul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glendinning, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of boundary equilibrium bifurcations in planar Filippov systems</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2016-01</date><risdate>2016</risdate><volume>26</volume><issue>1</issue><spage>013108</spage><epage>013108</epage><pages>013108-013108</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>If a family of piecewise smooth systems depending on a real parameter is defined on two different regions of the plane separated by a switching surface, then a boundary equilibrium bifurcation occurs if a stationary point of one of the systems intersects the switching surface at a critical value of the parameter. We derive the leading order terms of a normal form for boundary equilibrium bifurcations of planar systems. This makes it straightforward to derive a complete classification of the bifurcations that can occur. We are thus able to confirm classic results of Filippov [Differential Equations with Discontinuous Right Hand Sides (Kluwer, Dordrecht, 1988)] using different and more transparent methods, and explain why the ‘missing’ cases of Hogan et al. [Piecewise Smooth Dynamical Systems: The Case of the Missing Boundary Equilibrium Bifurcations (University of Bristol, 2015)] are the only cases omitted in more recent work.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>26826860</pmid><doi>10.1063/1.4940017</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1544-9161</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2016-01, Vol.26 (1), p.013108-013108 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_journals_2121910643 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Bifurcations Classification Differential equations Equilibrium Parameters Switching |
title | Classification of boundary equilibrium bifurcations in planar Filippov systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20boundary%20equilibrium%20bifurcations%20in%20planar%20Filippov%20systems&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Glendinning,%20Paul&rft.date=2016-01&rft.volume=26&rft.issue=1&rft.spage=013108&rft.epage=013108&rft.pages=013108-013108&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4940017&rft_dat=%3Cproquest_pubme%3E2121910643%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121910643&rft_id=info:pmid/26826860&rfr_iscdi=true |