Classification of boundary equilibrium bifurcations in planar Filippov systems
If a family of piecewise smooth systems depending on a real parameter is defined on two different regions of the plane separated by a switching surface, then a boundary equilibrium bifurcation occurs if a stationary point of one of the systems intersects the switching surface at a critical value of...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2016-01, Vol.26 (1), p.013108-013108 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If a family of piecewise smooth systems depending on a real parameter is defined on two different regions of the plane separated by a switching surface, then a boundary equilibrium bifurcation occurs if a stationary point of one of the systems intersects the switching surface at a critical value of the parameter. We derive the leading order terms of a normal form for boundary equilibrium bifurcations of planar systems. This makes it straightforward to derive a complete classification of the bifurcations that can occur. We are thus able to confirm classic results of Filippov [Differential Equations with Discontinuous Right Hand Sides (Kluwer, Dordrecht, 1988)] using different and more transparent methods, and explain why the ‘missing’ cases of Hogan et al. [Piecewise Smooth Dynamical Systems: The Case of the Missing Boundary Equilibrium Bifurcations (University of Bristol, 2015)] are the only cases omitted in more recent work. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/1.4940017 |