Classification of alkali-silica reaction and corrosion distress using acoustic emission

The Nuclear Regulatory Commission regulates approximately 100 commercial nuclear power reactor facilities that contribute about 20% of the total electric energy produced in the United States. Half of these reactor facilities are over 30 years old and are approaching their original design service lif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abdelrahman, Marwa, ElBatanouny, Mohamed, Serrato, Michael, Dixon, Kenneth, Larosche, Carl, Ziehl, Paul
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Nuclear Regulatory Commission regulates approximately 100 commercial nuclear power reactor facilities that contribute about 20% of the total electric energy produced in the United States. Half of these reactor facilities are over 30 years old and are approaching their original design service life. Due to economic and durability considerations, significant portions of many of the facilities were constructed with reinforced concrete, including the containment facilities, cooling towers, and foundations. While most of these concrete facilities have performed exceptionally well throughout their initial expected service life, some are beginning to exhibit different forms of concrete deterioration. In this study, acoustic emission (AE) is used to monitor two main concrete deterioration mechanisms; alkali-silica reaction (ASR) distress and corrosion of reinforcing steel. An accelerated ASR test was conducted where specimens were continuously monitored with AE. The results show that AE can detect and classify damage due to ASR distress in the specimens. AE was also used to remotely monitor active corrosion regions in a reactor facility. AE monitoring of accelerated corrosion testing was also conducted on a concrete block specimen cut from a similar reactor building. Electrochemical measurements were conducted to correlate AE activity to quantifiable corrosion measurements and to enhance capabilities for service life prediction.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4940610