Band offsets and electronic structures of interface between In0.5Ga0.5As and InP

III–V semiconductor interfacing with high-κ gate oxide is crucial for the high mobility metal-oxide-semiconductor field transistor device. With density functional theory calculations, we explored the band offsets and electronic structures of the In0.5Ga0.5As/InP interfaces with various interfacial b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-02, Vol.119 (5)
Hauptverfasser: Cai, Genwang, Wang, Changhong, Wang, Weichao, Liang, Erjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:III–V semiconductor interfacing with high-κ gate oxide is crucial for the high mobility metal-oxide-semiconductor field transistor device. With density functional theory calculations, we explored the band offsets and electronic structures of the In0.5Ga0.5As/InP interfaces with various interfacial bondings. Among six different bonding interfaces, we found that P-In(Ga) bonding interface showed the highest stability. Local density of states calculations was adopted to calculate the band offsets. Except for the metallic interface, we noticed that neither valence band offset nor conduction band offset depended on the interfacial bondings. For the most stable P-In(Ga) interface, we did not observe any gap states. Furthermore, we explored the P-In(Ga) interfaces with interfacial P-As exchange defects, which slightly modified the interface stability and the band offsets but did not produce any gap states. These findings provide solid evidence that InP could serve as a promising interfacial passivation layer between III–V material and high-κ oxide in the application of high mobility devices.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4941029