Generalized interactions supported on hypersurfaces
We analyze a family of singular Schrödinger operators with local singular interactions supported by a hypersurface Σ ⊂ ℝ n , n ≥ 2, being the boundary of a Lipschitz domain, bounded or unbounded, not necessarily connected. At each point of Σ the interaction is characterized by four real parameters,...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2016-04, Vol.57 (4), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze a family of singular Schrödinger operators with local singular interactions supported by a hypersurface Σ ⊂ ℝ
n
, n ≥ 2, being the boundary of a Lipschitz domain, bounded or unbounded, not necessarily connected. At each point of Σ the interaction is characterized by four real parameters, the earlier studied case of δ- and δ′-interactions being particular cases. We discuss spectral properties of these operators and derive operator inequalities between those referring to the same hypersurface but different couplings and describe their implications for spectral properties. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4947181 |