Ground state solutions for semilinear time-harmonic Maxwell equations
This paper is concerned with the time-harmonic semilinear Maxwell equation: ∇ × (∇ × u) + λu = f(x, u) in Ω with the boundary condition ν × u = 0 on ∂Ω, where Ω ⊂ ℝ3 is a simply connected, smooth, bounded domain with connected boundary and ν : ∂Ω → ℝ3 is the exterior normal. Here ∇ × denotes the cur...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2016-04, Vol.57 (4), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the time-harmonic semilinear Maxwell equation: ∇ × (∇ × u) + λu = f(x, u) in Ω with the boundary condition ν × u = 0 on ∂Ω, where Ω ⊂ ℝ3 is a simply connected, smooth, bounded domain with connected boundary and ν : ∂Ω → ℝ3 is the exterior normal. Here ∇ × denotes the curl operator in ℝ3 and the boundary condition holds when Ω is surrounded by a perfect conductor. By using the generalized Nehari manifold method due to Szulkin and Weth [Handbook of Nonconvex Analysis and Applications (International Press, Somerville, 2010), pp. 597–632] and some new techniques, existence of ground state solutions for above equation is established under some generic conditions on f. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4947179 |