An accurate spline polynomial cubature formula for double integration with logarithmic singularity
The paper studied the integration of logarithmic singularity problem J ( y ¯ ) = ∬ ∇ ζ ( y ¯ ) l o g | y ¯ − y ¯ 0 * | d A , where y ¯ = ( α , β ) , y ¯ 0 = ( α 0 , β 0 ) the domain ∇ is rectangle ∇ = [r 1, r 2] × [r 3, r 4], the arbitrary point y ¯ ∈ ∇ and the fixed point y ¯ 0 ∈ ∇ . The given dens...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper studied the integration of logarithmic singularity problem
J
(
y
¯
)
=
∬
∇
ζ
(
y
¯
)
l
o
g
|
y
¯
−
y
¯
0
*
|
d
A
,
where
y
¯
=
(
α
,
β
)
,
y
¯
0
=
(
α
0
,
β
0
)
the domain ∇ is rectangle ∇ = [r
1, r
2] × [r
3, r
4], the arbitrary point
y
¯
∈
∇
and the fixed point
y
¯
0
∈
∇
. The given density function
ζ(
y
¯
)
, is smooth on the rectangular domain ∇ and is in the functions class C
2,τ (∇). Cubature formula (CF) for double integration with logarithmic singularities (LS) on a rectangle ∇ is constructed by applying type (0, 2) modified spline function D
Γ(P). The results obtained by testing the density functions
ζ(
y
¯
)
as linear and absolute value functions shows that the constructed CF is highly accurate. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4952513 |