The impact of electron correlations on the energetics and stability of silicon nanoclusters
The first-principles prediction of stable nanocluster structure is often hampered by the existence of many isomer configurations with energies close to the ground state. This fact attaches additional importance to many-electron effects beyond density functional theory (DFT), because their contributi...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2016-08, Vol.145 (7), p.074313-074313 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first-principles prediction of stable nanocluster structure is often hampered by the existence of many isomer configurations with energies close to the ground state. This fact attaches additional importance to many-electron effects beyond density functional theory (DFT), because their contributions can change a subtle energy order of competitive structures. To analyze this problem, we consider, as an example, the energetics of silicon nanoclusters passivated by hydrogen Si10H2n
(0 ≤ n ≤ 11), where passivation changes the structure from compact to loosely packed and branched. Our calculations performed with DFT, hybrid functionals, and Hartree-Fock methods, as well as by the GW approximation, confirm a considerable sensitivity of isomer energy ordering to many-electron effects. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.4960675 |