The impact of electron correlations on the energetics and stability of silicon nanoclusters

The first-principles prediction of stable nanocluster structure is often hampered by the existence of many isomer configurations with energies close to the ground state. This fact attaches additional importance to many-electron effects beyond density functional theory (DFT), because their contributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-08, Vol.145 (7), p.074313-074313
Hauptverfasser: Matsko, N. L., Tikhonov, E. V., Baturin, V. S., Lepeshkin, S. V., Oganov, Artem R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The first-principles prediction of stable nanocluster structure is often hampered by the existence of many isomer configurations with energies close to the ground state. This fact attaches additional importance to many-electron effects beyond density functional theory (DFT), because their contributions can change a subtle energy order of competitive structures. To analyze this problem, we consider, as an example, the energetics of silicon nanoclusters passivated by hydrogen Si10H2n (0 ≤ n ≤ 11), where passivation changes the structure from compact to loosely packed and branched. Our calculations performed with DFT, hybrid functionals, and Hartree-Fock methods, as well as by the GW approximation, confirm a considerable sensitivity of isomer energy ordering to many-electron effects.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4960675