Dynamic control of droplet jumping by tailoring nanoparticle concentrations

The dynamic impact behavior of droplets from solid surfaces has attracted increasing interest, especially propelled by the advances in the bio-inspired interfacial materials. In this work, we investigate the impact and bouncing dynamics of ethylene glycol droplets containing silica nanoparticles on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-07, Vol.109 (2)
Hauptverfasser: Hao, Chonglei, Zhou, Yang, Zhou, Xiaofeng, Che, Lufeng, Chu, Baojin, Wang, Zuankai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamic impact behavior of droplets from solid surfaces has attracted increasing interest, especially propelled by the advances in the bio-inspired interfacial materials. In this work, we investigate the impact and bouncing dynamics of ethylene glycol droplets containing silica nanoparticles on superhydrophobic surfaces (SHS). We find that the rebounding of droplets from SHS is highly dependent on the impact velocity and suspension concentrations. By increasing the impact velocity or suspension concentrations, the probability of droplet bouncing from SHS is greatly reduced. The presence of nanoparticles can significantly increase the viscous energy dissipation inside the liquid droplets, therefore suppressing the jumping from surfaces. Based on the energy dissipation characterization, we also find the critical concentration to determine the manifestation of the viscous effect, above which the liquid suspensions exhibit non-Newtonian fluid properties. Our study provides an efficient approach to dynamically control the liquid jumping behaviors on SHS by tailoring the suspension concentrations. The insights learned from this study can be very useful in many industrial applications.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4958691