Effect of carbonation temperature on CO2 adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO3

Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO2 capture mainly due to their high CO2 adsorption capacity. In this study, micro/nanostructured aragonite CaCO3 was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hlaing, Nwe Ni, Sreekantan, Srimala, Hinode, Hirofumi, Kurniawan, Winarto, Thant, Aye Aye, Othman, Radzali, Mohamed, Abdul Rahman, Salime, Chris
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO2 capture mainly due to their high CO2 adsorption capacity. In this study, micro/nanostructured aragonite CaCO3 was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO3 with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO2 adsorption capacity of CaO derived from aragonite CaCO3 sample. At 300 °C, the sample reached the CO2 adsorption capacity of 0.098 g-CO2/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO2/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO2 adsorption capacity of the CaO derived from aragonite CaCO3.
ISSN:0094-243X
1551-7616
DOI:10.1063/1.4948841