Resonance in fast-wave amplitude in the periphery of cylindrical plasmas and application to edge losses of wave heating power in tokamaks

Heating magnetically confined plasmas using waves in the ion-cyclotron range of frequencies typically requires coupling these waves over a steep density gradient. This process has produced an unexpected and deleterious phenomenon on the National Spherical Torus eXperiment (NSTX): a prompt loss of wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2016-07, Vol.23 (7)
Hauptverfasser: Perkins, R. J., Hosea, J. C., Bertelli, N., Taylor, G., Wilson, J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heating magnetically confined plasmas using waves in the ion-cyclotron range of frequencies typically requires coupling these waves over a steep density gradient. This process has produced an unexpected and deleterious phenomenon on the National Spherical Torus eXperiment (NSTX): a prompt loss of wave power along magnetic field lines in front of the antenna to the divertor. Understanding this loss may be key to achieving effective heating and expanding the operational space of NSTX-Upgrade. Here, we propose that a new type of mode, which conducts a significant fraction of the total wave power in the low-density peripheral plasma, is driving these losses. We demonstrate the existence of such modes, which are distinct from surface modes and coaxial modes, in a cylindrical cold-plasma model when a half wavelength structure fits into the region outside the core plasma. The latter condition generalizes the previous hypothesis regarding the occurrence of the edge losses and may explain why full-wave simulations predict these losses in some cases but not others. If valid, this condition implies that outer gap control is a potential strategy for mitigating the losses in NSTX-Upgrade in addition to raising the magnetic field or influencing the edge density.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4954899