Enhanced hydrogen storage by using lithium decoration on phosphorene

The hydrogen storage characteristics of Li decorated phosphorene were systematically investigated based on first-principle density functional theory. It is revealed that the adsorption of H2 on pristine phosphorene is relatively weak with an adsorption energy of 0.06 eV. While this value can be dram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-07, Vol.120 (2)
Hauptverfasser: Yu, Zhiyuan, Wan, Neng, Lei, Shuangying, Yu, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hydrogen storage characteristics of Li decorated phosphorene were systematically investigated based on first-principle density functional theory. It is revealed that the adsorption of H2 on pristine phosphorene is relatively weak with an adsorption energy of 0.06 eV. While this value can be dramatically enhanced to ∼0.2 eV after the phosphorene was decorated by Li, and each Li atom can adsorb up to three H2 molecules. The detailed mechanism of the enhanced hydrogen storage was discussed based on our density functional theory calculations. Our studies give a conservative prediction of hydrogen storage capacity to be 4.4 wt. % through Li decoration on pristine phosphorene. By comparing our calculations to the present molecular dynamic simulation results, we expect our adsorption system is stable under room temperature and hydrogen can be released after moderate heating.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4958695