Engineered magnetic domain textures in exchange bias bilayer systems

A magnetic domain texture has been deterministically engineered in a topographically flat exchange-biased (EB) thin film system. The texture consists of long-range periodically arranged unit cells of four individual domains, characterized by individual anisotropies, individual geometry, and with non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-07, Vol.120 (3)
Hauptverfasser: Gaul, Alexander, Hankemeier, Sebastian, Holzinger, Dennis, Müglich, Nicolas David, Staeck, Philipp, Frömter, Robert, Oepen, Hans Peter, Ehresmann, Arno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A magnetic domain texture has been deterministically engineered in a topographically flat exchange-biased (EB) thin film system. The texture consists of long-range periodically arranged unit cells of four individual domains, characterized by individual anisotropies, individual geometry, and with non-collinear remanent magnetizations. The texture has been engineered by a sequence of light-ion bombardment induced magnetic patterning of the EB layer system. The magnetic texture's in-plane spatial magnetization distribution and the corresponding domain walls have been characterized by scanning electron microscopy with polarization analysis (SEMPA). The influence of magnetic stray fields emerging from neighboring domain walls and the influence of the different anisotropies of the adjacent domains on the Néel type domain wall core's magnetization rotation sense and widths were investigated. It is shown that the usual energy degeneracy of clockwise and counterclockwise rotating magnetization through the walls is revoked, suppressing Bloch lines along the domain wall. Estimates of the domain wall widths for different domain configurations based on material parameters determined by vibrating sample magnetometry were quantitatively compared to the SEMPA data.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4958847