ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module

•Proposed a new modularized forecasting framework (ModAugNet) for stock market.•ModAugNet has two LSTM modules: overfitting Prevention Module and Prediction Module.•Found that Prevention Module helps to prevent network from overfitting when training.•Verified that ModAugNet significantly outperforme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2018-12, Vol.113, p.457-480
Hauptverfasser: Baek, Yujin, Kim, Ha Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Proposed a new modularized forecasting framework (ModAugNet) for stock market.•ModAugNet has two LSTM modules: overfitting Prevention Module and Prediction Module.•Found that Prevention Module helps to prevent network from overfitting when training.•Verified that ModAugNet significantly outperformed a model without Prevention Module.•Showed that test performance solely depends on test input of Prediction Module. Forecasting a financial asset's price is important as one can lower the risk of investment decision- making with accurate forecasts. Recently, the deep neural network is popularly applied in this area of research; however, it is prone to overfitting owing to limited availability of data points for training. We propose a novel data augmentation approach for stock market index forecasting through our ModAugNet framework, which consists of two modules: an overfitting prevention LSTM module and a prediction LSTM module. The performance of the proposed model is evaluated using two different representative stock market data (S&P500 and Korea Composite Stock Price Index 200 (KOSPI200)). The results confirm the excellent forecasting accuracy of the proposed model. ModAugNet-c yields a lower test error than the comparative model (SingleNet) in which an overfitting prevention LSTM module is absent. The test mean squared error (MSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) for S&P500 decreased to 54.1%, 35.5%, and 32.7%, respectively, of the corresponding S&P500 forecasting errors of SingleNet, while the same for KOSPI200 decreased to 48%, 23.9%, and 32.7%, respectively, of the corresponding KOSPI200 forecasting errors of SingleNet. Furthermore, through the analyses of the trained ModAugNet-c, we found that test performance is entirely dependent on the prediction LSTM module. The contribution of this study is its applicability in various instances where it is challenging to artificially augment data, such as medical data analysis and financial time-series modeling.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2018.07.019