Synthesized CuFe^sub 2^O^sub 4^/SiO^sub 2^ nanocomposites added to water/EG: Evaluation of the thermophysical properties beside sensitivity analysis & EANN

The new nanocomposite material of CuFe2O4 (copper ferrite) nanoparticles coated by SiO2 is synthesized. Then, this newly generated nanocomposite is dispersed in water/ethylene glycol (60:40) to make a new homogeneous nanofluid in order to avoid settling and agglomeration. Through suitable accurate e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2018-12, Vol.127, p.1169
Hauptverfasser: Karimipour, Arash, Bagherzadeh, Seyed Amin, Goodarzi, Marjan, Alnaqi, Abdulwahab A, Bahiraei, Mehdi, Safaei, Mohammad Reza, Shadloo, Mostafa Safdari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The new nanocomposite material of CuFe2O4 (copper ferrite) nanoparticles coated by SiO2 is synthesized. Then, this newly generated nanocomposite is dispersed in water/ethylene glycol (60:40) to make a new homogeneous nanofluid in order to avoid settling and agglomeration. Through suitable accurate experiments, density, viscosity and electrical conductivity of the mixture are measured at various temperatures and nanoparticles concentrations. Besides we empirical correlations for the same parameters developed via the curve fitting method. To have a better statistical view, the optimization procedure based on the enhanced artificial neural network (EANN), developed at present study, is performed. Furthermore, according to the obtained empirical results, the sensitivity analysis is provided and the margin of deviations is represented for each proposed correlation. Generation, stabilization and measuring the density, viscosity and electrical conductivity of the newly mentioned nanofluid, make present work different from the previous ones in this field. The highest amount of relative electrical conductivity is observed at T = 75 °C and φ = 0.02 (g/mL); however, the case of T = 30 °C and φ = 0.02 (g/mL) represents the maximum value of relative viscosity. Moreover, density is decreased by temperature augmentation, through all cases.
ISSN:0017-9310
1879-2189