First-principles predictions of electronic properties of GaAs1-x-yPyBix and GaAs1-x-yPyBix-based heterojunctions

Significant efficiency droop is a major concern for light-emitting diodes and laser diodes operating at high current density. Recent study has suggested that heavily Bi-alloyed GaAs can decrease the non-radiative Auger recombination and therefore alleviate the efficiency droop. Using density functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-09, Vol.109 (11)
Hauptverfasser: Luo Guangfu, ghani Kamran, Kuech, Thomas F, Morgan, Dane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Significant efficiency droop is a major concern for light-emitting diodes and laser diodes operating at high current density. Recent study has suggested that heavily Bi-alloyed GaAs can decrease the non-radiative Auger recombination and therefore alleviate the efficiency droop. Using density functional theory, we studied a newly fabricated quaternary alloy, GaAs1-x-yPyBix, which can host significant amounts of Bi, through calculations of its band gap, spin-orbit splitting, and band offsets with GaAs. We found that the band gap changes of GaAs1-x-yPyBix relative to GaAs are determined mainly by the local structural changes around P and Bi atoms rather than their electronic structure differences. To obtain alloy with lower Auger recombination than GaAs bulk, we identified the necessary constraints on the compositions of P and Bi. Finally, we demonstrated that GaAs/GaAs1-x-yPyBix heterojunctions with potentially low Auger recombination can exhibit small lattice mismatch and large enough band offsets for strong carrier confinement. This work shows that the electronic properties of GaAs1-x-yPyBix are potentially suitable for high-power infrared light-emitting diodes and laser diodes with improved efficiency.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4962729