Detection of atmospheric infrasound with a ring laser interferometer

In this paper, the results from using a large active ring laser interferometer as an infrasound detector are presented. On April 27, 2014, an EF4 tornado struck Central Arkansas and passed within 21 km of the ring laser interferometer. The tornado resulted in 16 fatalities and millions of dollars in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-09, Vol.120 (12)
Hauptverfasser: Dunn, Robert W., Meredith, John A., Lamb, Angela B., Kessler, Elijah G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the results from using a large active ring laser interferometer as an infrasound detector are presented. On April 27, 2014, an EF4 tornado struck Central Arkansas and passed within 21 km of the ring laser interferometer. The tornado resulted in 16 fatalities and millions of dollars in damage. Using the ring laser to study the tornado infrasound produced results that qualitatively agree with several findings from a long-term study of weather generated infrasound by the National Oceanic and Atmospheric Administration. A Fast Fourier Transform of the ring laser output revealed a coherent frequency of approximately 0.94 Hz that lasted during the life of the storm. The 0.94 Hz frequency was initially observed 30 min before the funnel was reported on the ground. Infrasound signatures from four separate tornadoes are presented. In each case, coherent infrasound was detected at least 30 min before the tornado was reported on the ground. Examples of the detection of distant coherent acoustic-gravity waves from volcanoes and typhoons are also presented. In addition, buoyancy waves were recorded.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4962455