Persistence of atomic spectral line on laser-induced Cu plasma with spatial confinement

This paper carries out the spatial confinement effect on laser-induced Cu breakdown spectroscopy in a cylindrical cavity via a nanosecond pulsed Q-switch Nd:YAG laser operating at a wavelength of 1064 nm. The temporal evolution of the laser-induced plasma spectroscopy is used to investigate the char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2016-11, Vol.23 (11)
Hauptverfasser: Wang, Ying, Chen, Anmin, Sui, Laizhi, Li, Suyu, Liu, Dunli, Wang, Xiaowei, Jiang, Yuanfei, Huang, Xuri, Jin, Mingxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper carries out the spatial confinement effect on laser-induced Cu breakdown spectroscopy in a cylindrical cavity via a nanosecond pulsed Q-switch Nd:YAG laser operating at a wavelength of 1064 nm. The temporal evolution of the laser-induced plasma spectroscopy is used to investigate the characteristics of spectral persistence. The atomic spectral persistence in plasma generated from Cu with spatial confinement is experimentally demonstrated, where the results indicate that the diameter of the confinement cavity plays a very important role in the persistence of an excited neutral Cu emission line, while the depth of the confinement cavity is almost independent of Cu (I) line persistence. As the diameter of the confinement cavity increases, the persistence of the Cu (I) line in the plasma grows longer under a certain limit. The likely reason for this phenomenon is that under spatial confinement, the reflected shockwave compresses the plasma and leads to an increase in the plasma temperature and density at a certain delay time, which causes further excitation of atomic population to higher excited levels. Finally, the collision rate between particles in the plasma plume is increased.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4968225