Analysis of the PEDOT:PSS/Si nanowire hybrid solar cell with a tail state model

In this paper, the electrical properties of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire hybrid solar cell have been analyzed and an optimized structure is proposed. In addition, the planar PEDOT:PSS/c-Si hybrid solar cell is also modeled for comparison....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-12, Vol.120 (21)
Hauptverfasser: Ho, Kuan-Ying, Li, Chi-Kang, Syu, Hong-Jhang, Lai, Yi, Lin, Ching-Fuh, Wu, Yuh-Renn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the electrical properties of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire hybrid solar cell have been analyzed and an optimized structure is proposed. In addition, the planar PEDOT:PSS/c-Si hybrid solar cell is also modeled for comparison. We first developed a simulation software which is capable of modeling organic/inorganic hybrid solar cells by including Gaussian shape density of states into Poisson and drift-diffusion solver to present the tail states and trap states in the organic material. Therefore, the model can handle carrier transport, generation, and recombination in both organic and inorganic materials. Our results show that at the applied voltage near open-circuit voltage (V oc ), the recombination rate becomes much higher at the PEDOT:PSS/Si interface region, which limits the fill factor and V oc . Hence, a modified structure with a p-type amorphous silicon (a-Si) layer attached on the interface of Si layer and an n+-type Si layer inserted near the bottom contact are proposed. The highest conversion efficiency of 16.10% can be achieved if both structures are applied.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4970827