Optimal‐size clique transversals in chordal graphs

The following question was raised by Tuza in 1990 and Erdős et al. in 1992: if every edge of an n‐vertex chordal graph G is contained in a clique of size at least four, does G have a clique transversal, i.e. a set of vertices meeting all nontrivial maximal cliques, of size at most n/4? We prove that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2018-12, Vol.89 (4), p.479-493
Hauptverfasser: Cooper, Jacob W., Grzesik, Andrzej, Král', Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The following question was raised by Tuza in 1990 and Erdős et al. in 1992: if every edge of an n‐vertex chordal graph G is contained in a clique of size at least four, does G have a clique transversal, i.e. a set of vertices meeting all nontrivial maximal cliques, of size at most n/4? We prove that every such graph G has a clique transversal of size at most 2(n−1)/7 if n≥5, which is the best possible bound.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.22362