Optimal‐size clique transversals in chordal graphs
The following question was raised by Tuza in 1990 and Erdős et al. in 1992: if every edge of an n‐vertex chordal graph G is contained in a clique of size at least four, does G have a clique transversal, i.e. a set of vertices meeting all nontrivial maximal cliques, of size at most n/4? We prove that...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2018-12, Vol.89 (4), p.479-493 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The following question was raised by Tuza in 1990 and Erdős et al. in 1992: if every edge of an n‐vertex chordal graph G is contained in a clique of size at least four, does G have a clique transversal, i.e. a set of vertices meeting all nontrivial maximal cliques, of size at most n/4? We prove that every such graph G has a clique transversal of size at most 2(n−1)/7 if n≥5, which is the best possible bound. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22362 |