Robust model reference adaptive control for a two-dimensional piezo-driven micro-displacement scanning platform based on the asymmetrical Bouc-Wen model

The hysteresis characteristics resulted from piezoelectric actuators (PAs) and the residual vibration in the rapid positioning of a two-dimensional piezo-driven micro-displacement scanning platform (2D-PDMDSP) will greatly affect the positioning accuracy and speed. In this paper, in order to improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2016-11, Vol.6 (11), p.115308-115308-14
Hauptverfasser: Yang, Haigen, Zhu, Wei, Fu, Xiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hysteresis characteristics resulted from piezoelectric actuators (PAs) and the residual vibration in the rapid positioning of a two-dimensional piezo-driven micro-displacement scanning platform (2D-PDMDSP) will greatly affect the positioning accuracy and speed. In this paper, in order to improve the accuracy and speed of the positioning and restrain the residual vibration of 2D-PDMDSP, firstly, Utilizing an online hysteresis observer based on the asymmetrical Bouc-Wen model, the PA with the hysteresis characteristics is feedforward linearized and can be used as a linear actuator; secondly, zero vibration and derivative shaping (ZVDS) technique is used to eliminate the residual vibration of the 2D-PDMDSP; lastly, the robust model reference adaptive (RMRA) control for the 2D-PDMDSP is proposed and explored. The rapid control prototype of the RMRA controller combining the proposed feedforward linearization and ZVDS control for the 2D-PDMDSP with rapid control prototyping technique based on the real-time simulation system is established and experimentally tested, and the corresponding controlled results are compared with those by the PID control method. The experimental results show that the proposed RMRA control method can significantly improve the accuracy and speed of the positioning and restrain the residual vibration of 2D-PDMDSP.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.4967428