Lagrangian Approximations for Stochastic Reachability of a Target Tube

In this paper we examine how Lagrangian techniques can be used to compute underapproximations and overapproximation of the finite-time horizon, stochastic reach-avoid level sets for discrete-time, nonlinear systems. This approach is applicable for a generic nonlinear system without any convexity ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-10
Hauptverfasser: Gleason, Joseph D, Vinod, Abraham P, Oishi, Meeko M K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we examine how Lagrangian techniques can be used to compute underapproximations and overapproximation of the finite-time horizon, stochastic reach-avoid level sets for discrete-time, nonlinear systems. This approach is applicable for a generic nonlinear system without any convexity assumptions on the safe and target sets. We examine and apply our methods on the reachability of a target tube problem, a more generalized version of the finite-time horizon reach-avoid problem. Because these methods utilize a Lagrangian (set theoretic) approach, we eliminate the necessity to grid the state, input, and disturbance spaces allowing for increased scalability and faster computation. The methods scalability are currently limited by the computational requirements for performing the necessary set operations by current computational geometry tools. The primary trade-off for this improved extensibility is conservative approximations of actual stochastic reach set. We demonstrate these methods on several examples including the standard double-integrator, a chain of integrators, and a 4-dimensional space vehicle rendezvous docking problem.
ISSN:2331-8422