Automatic Segmentation of Brachial Artery based on Fuzzy C-Means Pixel Clustering from Ultrasound Images

Automatic extraction of brachial artery and measuring associated indices such as flow-mediated dilatation and Intima-media thickness are important for early detection of cardiovascular disease and other vascular endothelial malfunctions. In this paper, we propose the basic but important component of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2018-04, Vol.8 (2), p.638
Hauptverfasser: Park, Joonsung, Song, Doo Heon, Nho, Hosung, Choi, Hyun-Min, Kim, Kyung-Ae, Park, Hyun Jun, Kim, Kwang Baek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic extraction of brachial artery and measuring associated indices such as flow-mediated dilatation and Intima-media thickness are important for early detection of cardiovascular disease and other vascular endothelial malfunctions. In this paper, we propose the basic but important component of such decision-assisting medical software development – noise tolerant fully automatic segmentation of brachial artery from ultrasound images. Pixel clustering with Fuzzy C-Means algorithm in the quantization process is the key component of that segmentation with various image processing algorithms involved. This algorithm could be an alternative choice of segmentation process that can replace speckle noise-suffering edge detection procedures in this application domain.
ISSN:2088-8708
2088-8708
DOI:10.11591/ijece.v8i2.pp638-643