Synthesis, Characterization and Physicomechanical Properties of Novel Water-based Biodegradable Polyurethane Dispersion

Novel water-based biodegradable polyurethane dispersions with an aim to develop environmentally friendly materials, including medicine, various industries, have been prepared in this study. Biodegradable ionic polyurethanes (IPU) were synthesized based on polyols from renewable resources, such as ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of applied chemistry 2018-07, Vol.91 (7), p.1198-1208
Hauptverfasser: Ranjbarfar, Behrooz, Taghvaei Ganjali, Saeed, Alavi Nikje, Mir Mohammad, Moradi, Shahram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Novel water-based biodegradable polyurethane dispersions with an aim to develop environmentally friendly materials, including medicine, various industries, have been prepared in this study. Biodegradable ionic polyurethanes (IPU) were synthesized based on polyols from renewable resources, such as castor oil (CO), in the presence of a polyester polyol and polyethylene glycol (PEG) with hydrophilic property and 1,6-hexamethylene diisocyanate. 1,4-Butanediol and dibutyltin dilaurate, were used as a chain extender and catalyst, respectively. The comprehensive investigations of the structure and properties of five types of synthesized polyurethanes demonstrated biodegradability relationship of these polyurethanes with their structure and composition. In this research effects of different types and content of polyols on biodegradability and physico mechanical properties of prepared PUDs were investigated. The structure, properties and physico mechanical and application behavior of mentioned materials were characterized by 1 H NMR, FTIR spectroscopy, thermogravimetric analysis (TG/DTG) and dynamic mechanical thermal analysis (DMTA). The adhesion properties were measured by pull off test as well. Particle size was measured by dynamic light scattering (DLS) methods. The biodegradability of prepared polyurethane dispersions was confirmed by water uptake, hydrolytic and enzymatic degradation in phosphate buffer saline (PBS) with lipase enzyme in PBS. Results showed that by the incorporation of natural components into the polymer chain, adjusting of hydrophilic and hydrolytic liability properties of soft segments and especial relevant designs, useful polyurethane can be synthesized with desirable property of biodegradability and dispersion stability. Except for one sample, other samples were decomposed totally in enzymatic media.
ISSN:1070-4272
1608-3296
DOI:10.1134/S1070427218070200