MIDAS Regressions: Further Results and New Directions

We explore mixed data sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Volatility and related processes are our prime focus, though the regression method has wider applications in macroeconomics and finance, among other areas....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric reviews 2007-01, Vol.26 (1), p.53-90
Hauptverfasser: Ghysels, Eric, Sinko, Arthur, Valkanov, Rossen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore mixed data sampling (henceforth MIDAS) regression models. The regressions involve time series data sampled at different frequencies. Volatility and related processes are our prime focus, though the regression method has wider applications in macroeconomics and finance, among other areas. The regressions combine recent developments regarding estimation of volatility and a not-so-recent literature on distributed lag models. We study various lag structures to parameterize parsimoniously the regressions and relate them to existing models. We also propose several new extensions of the MIDAS framework. The paper concludes with an empirical section where we provide further evidence and new results on the risk-return trade-off. We also report empirical evidence on microstructure noise and volatility forecasting.
ISSN:0747-4938
1532-4168
DOI:10.1080/07474930600972467