The emergence of heterogeneity in invasive-dominated grassland: a matter of the scale of detection
Context Plant invasions of native ecosystems are one of the main causes of declines in biodiversity via system-simplification. Restoring native biodiversity can be particularly challenging in landscapes where invasive species have become dominant and where a new set of feedbacks reinforce an invaded...
Gespeichert in:
Veröffentlicht in: | Landscape ecology 2018-12, Vol.33 (12), p.2103-2119 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context
Plant invasions of native ecosystems are one of the main causes of declines in biodiversity via system-simplification. Restoring native biodiversity can be particularly challenging in landscapes where invasive species have become dominant and where a new set of feedbacks reinforce an invaded state and preclude restoration actions. We lack an understanding of the response of invaded systems to landscape-level manipulations to restore pattern and process relationships and how to identify these relationships when they do not appear at the expected scale.
Objectives
To better understand how fire and grazing influence landscape-level heterogeneity in invaded landscapes, we assess the scale at which grazing pressure and seasonality mediate the success of re-introducing a historical disturbance regime, grazing driven by fire (termed pyric herbivory), to an invasive plant-dominated landscape.
Methods
We manipulated grazing timing and intensity in exotic grass-dominated grasslands managed for landscape heterogeneity with spring fire and grazing. In pastures under patch-burn grazing management, we evaluated the spatial and temporal variability of plant functional groups and vegetation structure among and within patches managed with separate grazing systems: season-long stocking and intensive early stocking.
Results
Warm- and cool-season grasses exhibited greater among-patch variability in invasive-plant dominated grassland under intensive early grazing than traditional season-long grazing, but landscape-level heterogeneity, as measured through vegetation structure was minimal and invariable under both levels of grazing pressure, which contrasts findings in native-dominated systems. Moreover, within-patch heterogeneity for these functional groups was detected; contrasting the prediction that among-patch heterogeneity, in mesic grasslands, manifests from within-patch homogeneity.
Conclusions
In invaded grasslands, manipulation of grazing pressure as a process that drives heterogeneous vegetation patterns influences native and non-native grass heterogeneity, but not heterogeneity of vegetation structure, within and among patches managed with fire. Fire and grazing-moderated heterogeneity patterns observed in native grass-dominated grasslands likely differ from invasive grass-dominated grasslands with implications for using pyric herbivory in invaded systems. |
---|---|
ISSN: | 0921-2973 1572-9761 |
DOI: | 10.1007/s10980-018-0725-x |