Mixed Problem for a Homogeneous Wave Equation with a Nonzero Initial Velocity

A mixed problem for a homogeneous wave equation with fixed ends, a summable potential, and a nonzero initial velocity is studied. Using the resolvent approach and developing the Krylov method for accelerating the convergence of Fourier series, a classical solution is obtained by the Fourier method u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2018-09, Vol.58 (9), p.1531-1543
1. Verfasser: Khromov, A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mixed problem for a homogeneous wave equation with fixed ends, a summable potential, and a nonzero initial velocity is studied. Using the resolvent approach and developing the Krylov method for accelerating the convergence of Fourier series, a classical solution is obtained by the Fourier method under minimal conditions on the smoothness of the initial data and a generalized solution in the case of the initial velocity represented by an arbitrary summable function is found.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542518090099