Existence and qualitative properties of concentrating solutions for the sinh-Poisson equation
We prove the existence of nodal solutions for – Δu = ρ sinh u with Dirichlet boundary conditions in bounded, 2D, smooth and non-smooth domains. Indeed, for ρ positive and small enough, we show that there exist at least two pairs of solutions, which change sign exactly once, whose nodal lines interse...
Gespeichert in:
Veröffentlicht in: | IMA journal of applied mathematics 2007-12, Vol.72 (6), p.706-729 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the existence of nodal solutions for – Δu = ρ sinh u with Dirichlet boundary conditions in bounded, 2D, smooth and non-smooth domains. Indeed, for ρ positive and small enough, we show that there exist at least two pairs of solutions, which change sign exactly once, whose nodal lines intersect the boundary. |
---|---|
ISSN: | 0272-4960 1464-3634 |
DOI: | 10.1093/imamat/hxm012 |