Some new results on integration for multifunction

It has been proven in Di Piazza and Musiał (Set Valued Anal 13:167–179, 2005 , Vector measures, integration and related topics, Birkhauser Verlag, Basel, vol 201, pp 171–182, 2010 ) that each Henstock–Kurzweil–Pettis integrable multifunction with weakly compact values can be represented as a sum of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2018-11, Vol.67 (2), p.361-372
Hauptverfasser: Candeloro, Domenico, Di Piazza, Luisa, Musiał, Kazimierz, Sambucini, Anna Rita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been proven in Di Piazza and Musiał (Set Valued Anal 13:167–179, 2005 , Vector measures, integration and related topics, Birkhauser Verlag, Basel, vol 201, pp 171–182, 2010 ) that each Henstock–Kurzweil–Pettis integrable multifunction with weakly compact values can be represented as a sum of one of its selections and a Pettis integrable multifunction. We prove here that if the initial multifunction is also Bochner measurable and has absolutely continuous variational measure of its integral, then it is a sum of a strongly measurable selection and of a variationally Henstock integrable multifunction that is also Birkhoff integrable (Theorem  3.4 ). Moreover, in case of strongly measurable (multi)functions, a characterization of the Birkhoff integrability is given using a kind of Birkhoff strong property.
ISSN:0035-5038
1827-3491
DOI:10.1007/s11587-018-0376-x