Low-field topological threshold in Majorana double nanowires

A hard proximity-induced superconducting gap has recently been observed in semiconductor nanowire systems at low magnetic fields. However, in the topological regime at high magnetic fields, a soft gap emerges and represents a fundamental obstacle to topologically protected quantum information proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-07, Vol.96 (3), Article 035306
Hauptverfasser: Schrade, Constantin, Thakurathi, Manisha, Reeg, Christopher, Hoffman, Silas, Klinovaja, Jelena, Loss, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A hard proximity-induced superconducting gap has recently been observed in semiconductor nanowire systems at low magnetic fields. However, in the topological regime at high magnetic fields, a soft gap emerges and represents a fundamental obstacle to topologically protected quantum information processing with Majorana bound states. Here we show that in a setup of double Rashba nanowires that are coupled to an s-wave superconductor and subjected to an external magnetic field along the wires, the topological threshold can be significantly reduced by the destructive interference of direct and crossed-Andreev pairing in this setup, precisely down to the magnetic field regime in which current experimental technology allows for a hard superconducting gap. We also show that the resulting Majorana bound states exhibit sufficiently short localization lengths, which makes them ideal candidates for future braiding experiments.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.96.035306