Polarization-resolved terahertz third-harmonic generation in a single-crystal superconductor NbN: Dominance of the Higgs mode beyond the BCS approximation
Recent advances in time-domain terahertz (THz) spectroscopy have unveiled that resonantly enhanced strong THz third-harmonic generation (THG) mediated by the collective Higgs amplitude mode occurs in s-wave superconductors, where charge-density fluctuations (CDFs) have been shown to also contribute...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-07, Vol.96 (2), Article 020505 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advances in time-domain terahertz (THz) spectroscopy have unveiled that resonantly enhanced strong THz third-harmonic generation (THG) mediated by the collective Higgs amplitude mode occurs in s-wave superconductors, where charge-density fluctuations (CDFs) have been shown to also contribute to the nonlinear third-order susceptibility. It has been theoretically proposed that the nonlinear responses of Higgs and CDF exhibit essentially different polarization dependences. Here we experimentally discriminate the two contributions by polarization-resolved intense THz transmission spectroscopy for a single-crystal NbN film. The result shows that the resonant THG in the transmitted light always appears in the polarization parallel to that of the incident light with no appreciable polarization-angle dependence relative to the crystal axis. When we compare this with the theoretical calculation here with the BCS approximation and the dynamical mean-field theory for a model of NbN constructed from first principles, the experimental result strongly indicates that the Higgs mode rather than the CDF dominates the THG resonance in NbN. A possible mechanism for this is the retardation effect in the phonon-mediated pairing interaction beyond BCS. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.96.020505 |