Research on the Recognition Algorithm concerning Geometric Boundary regarding Heat Conduction Based on BEM and CGM

An inverse algorithm on boundary element method and conjugate gradient method is proposed to solve the problem of thermal conduction inverse of geometric shape. The direct problem is solved with the boundary element method, while the solution to the inverse problem is obtained through optimizing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-13
Hauptverfasser: Zhang, Li, Sun, Xiaogang, Jia, Huangchao, Wang, Shoubin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An inverse algorithm on boundary element method and conjugate gradient method is proposed to solve the problem of thermal conduction inverse of geometric shape. The direct problem is solved with the boundary element method, while the solution to the inverse problem is obtained through optimizing the objective function in the conjugate gradient method. Taking into account the identification of different material specimens when the unknown boundary is sinusoidal, step function, or circular shape, the influence of initial value, temperature error, thermal conductivity, and thermal intensity on the precision of inversion solution is discussed. The experimental results show that the method can recognize various irregular boundaries and is insensitive to initial values, measurement errors, and heat intensity. The thermal conductivity has a certain effect on this method. The inversion accuracy is higher on the condition that the thermal conductivity is smaller.
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/3723949