A Consensus Reaching Model with Minimum Adjustments in Interval-Valued Intuitionistic MAGDM
This paper focuses on multiattribute group decision-making problems with interval-valued intuitionistic fuzzy values (IVIFVs) and develops a consensus reaching model with minimum adjustments to improve the consensus among decision-makers (DMs). To check the consensus, a consensus index is introduced...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-22 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on multiattribute group decision-making problems with interval-valued intuitionistic fuzzy values (IVIFVs) and develops a consensus reaching model with minimum adjustments to improve the consensus among decision-makers (DMs). To check the consensus, a consensus index is introduced by measuring the distance between each decision matrix and the collective one. For the group decision-making with unacceptable consensus, Consensus Rule 1 and Consensus Rule 2 are, respectively, proposed by minimizing adjustment amounts of individual decision matrices. According to these two consensus rules, two algorithms are devised to help DMs reach acceptable consensus. Moreover, the convergences of algorithms are proved. To determine weights of attributes, an interval-valued intuitionistic fuzzy program is constructed by maximizing comprehensive values of alternatives. Finally, alternatives are ranked based on their comprehensive values. Thereby, a novel method is proposed to solve MAGDM with IVIFVs. At length, a numerical example is examined to illustrate the effectiveness of the proposed method. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2018/9070813 |